Serveur d'exploration sur la maladie de Parkinson

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Executive processes in Parkinson's disease: FDG‐PET and network analysis

Identifieur interne : 001251 ( Main/Corpus ); précédent : 001250; suivant : 001252

Executive processes in Parkinson's disease: FDG‐PET and network analysis

Auteurs : Catherine Lozza ; Jean-Claude Baron ; David Eidelberg ; Marc J. Mentis ; Maren Carbon ; Rose-Marie Marié

Source :

RBID : ISTEX:529CFAF614C17C047BD7C7BE5C7894535011589A

English descriptors

Abstract

It is assumed widely that the clinical expression of Parkinson's Disease (PD), both motor and cognitive, is subtended by topographically distributed brain networks. However, little is known about the functional neuroanatomy of executive dysfunction in PD. Our objective was to validate further in a PD group the use of network analysis to assess the relationship between executive processes and pathological disorganization of frontostriatal networks. We studied 15 patients with idiopathic PD, and 7 age‐matched normal controls, using resting [18F]fluorodeoxyglucose (FDG) and high‐resolution positron emission tomography (PET). We carried out network analysis on regional metabolic data to identify specific covariation patterns associated with motor and executive dysfunction. We detected two independent patterns relating respectively to the two clinical abnormalities. The first pattern (principal component 1) was topographically similar to that described previously in other PD populations. Subject scores for this pattern discriminated patients from controls and correlated significantly with bradykinesia ratings (P = 0.013, r = 0.655) in PD patients. The second pattern (principal component 2) was characterized by relative ventromedial frontal, hippocampal, and striatal hypometabolism, associated with mediodorsal thalamic hypermetabolism. In the PD group, scores from this pattern correlated with scores on the conditional associative learning (CAL; P = 0.01, r = 0.690) and the Brown Peterson paradigm (BPP; P = 0.017, r = −0.651) tests, respectively assessing strategy and planning, and working memory. According to these findings, the networks subserving bradykinesia and executive dysfunction in PD seems to be topographically distinct and to involve different aspects of subcortico‐cortical processing. Hum. Brain Mapping 22:236–245, 2004. © 2004 Wiley‐Liss, Inc.

Url:
DOI: 10.1002/hbm.20033

Links to Exploration step

ISTEX:529CFAF614C17C047BD7C7BE5C7894535011589A

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Executive processes in Parkinson's disease: FDG‐PET and network analysis</title>
<author>
<name sortKey="Lozza, Catherine" sort="Lozza, Catherine" uniqKey="Lozza C" first="Catherine" last="Lozza">Catherine Lozza</name>
<affiliation>
<mods:affiliation>INSERM U 320, Centre Cyceron, Caen, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Equipe Universitaire‐Université de Basse Normandie, Caen, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Baron, Jean Laude" sort="Baron, Jean Laude" uniqKey="Baron J" first="Jean-Claude" last="Baron">Jean-Claude Baron</name>
<affiliation>
<mods:affiliation>INSERM U 320, Centre Cyceron, Caen, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Neurology, University of Cambridge, Cambridge, United Kingdom</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Eidelberg, David" sort="Eidelberg, David" uniqKey="Eidelberg D" first="David" last="Eidelberg">David Eidelberg</name>
<affiliation>
<mods:affiliation>Center for Neurosciences, North Shore‐Long Island Jewish Research Institute, Manhasset, New York</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mentis, Marc J" sort="Mentis, Marc J" uniqKey="Mentis M" first="Marc J." last="Mentis">Marc J. Mentis</name>
<affiliation>
<mods:affiliation>Center for Neurosciences, North Shore‐Long Island Jewish Research Institute, Manhasset, New York</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Carbon, Maren" sort="Carbon, Maren" uniqKey="Carbon M" first="Maren" last="Carbon">Maren Carbon</name>
<affiliation>
<mods:affiliation>Center for Neurosciences, North Shore‐Long Island Jewish Research Institute, Manhasset, New York</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Marie, Rose Arie" sort="Marie, Rose Arie" uniqKey="Marie R" first="Rose-Marie" last="Marié">Rose-Marie Marié</name>
<affiliation>
<mods:affiliation>INSERM U 320, Centre Cyceron, Caen, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Equipe Universitaire‐Université de Basse Normandie, Caen, France</mods:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:529CFAF614C17C047BD7C7BE5C7894535011589A</idno>
<date when="2004" year="2004">2004</date>
<idno type="doi">10.1002/hbm.20033</idno>
<idno type="url">https://api.istex.fr/document/529CFAF614C17C047BD7C7BE5C7894535011589A/fulltext/pdf</idno>
<idno type="wicri:Area/Main/Corpus">001251</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Executive processes in Parkinson's disease: FDG‐PET and network analysis</title>
<author>
<name sortKey="Lozza, Catherine" sort="Lozza, Catherine" uniqKey="Lozza C" first="Catherine" last="Lozza">Catherine Lozza</name>
<affiliation>
<mods:affiliation>INSERM U 320, Centre Cyceron, Caen, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Equipe Universitaire‐Université de Basse Normandie, Caen, France</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Baron, Jean Laude" sort="Baron, Jean Laude" uniqKey="Baron J" first="Jean-Claude" last="Baron">Jean-Claude Baron</name>
<affiliation>
<mods:affiliation>INSERM U 320, Centre Cyceron, Caen, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Department of Neurology, University of Cambridge, Cambridge, United Kingdom</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Eidelberg, David" sort="Eidelberg, David" uniqKey="Eidelberg D" first="David" last="Eidelberg">David Eidelberg</name>
<affiliation>
<mods:affiliation>Center for Neurosciences, North Shore‐Long Island Jewish Research Institute, Manhasset, New York</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mentis, Marc J" sort="Mentis, Marc J" uniqKey="Mentis M" first="Marc J." last="Mentis">Marc J. Mentis</name>
<affiliation>
<mods:affiliation>Center for Neurosciences, North Shore‐Long Island Jewish Research Institute, Manhasset, New York</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Carbon, Maren" sort="Carbon, Maren" uniqKey="Carbon M" first="Maren" last="Carbon">Maren Carbon</name>
<affiliation>
<mods:affiliation>Center for Neurosciences, North Shore‐Long Island Jewish Research Institute, Manhasset, New York</mods:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Marie, Rose Arie" sort="Marie, Rose Arie" uniqKey="Marie R" first="Rose-Marie" last="Marié">Rose-Marie Marié</name>
<affiliation>
<mods:affiliation>INSERM U 320, Centre Cyceron, Caen, France</mods:affiliation>
</affiliation>
<affiliation>
<mods:affiliation>Equipe Universitaire‐Université de Basse Normandie, Caen, France</mods:affiliation>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Human Brain Mapping</title>
<title level="j" type="abbrev">Hum. Brain Mapp.</title>
<idno type="ISSN">1065-9471</idno>
<idno type="eISSN">1097-0193</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2004-07">2004-07</date>
<biblScope unit="volume">22</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="236">236</biblScope>
<biblScope unit="page" to="245">245</biblScope>
</imprint>
<idno type="ISSN">1065-9471</idno>
</series>
<idno type="istex">529CFAF614C17C047BD7C7BE5C7894535011589A</idno>
<idno type="DOI">10.1002/hbm.20033</idno>
<idno type="ArticleID">HBM20033</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1065-9471</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>FDG‐PET</term>
<term>Parkinson's disease</term>
<term>executive functions</term>
<term>network analysis</term>
<term>working memory</term>
</keywords>
</textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">It is assumed widely that the clinical expression of Parkinson's Disease (PD), both motor and cognitive, is subtended by topographically distributed brain networks. However, little is known about the functional neuroanatomy of executive dysfunction in PD. Our objective was to validate further in a PD group the use of network analysis to assess the relationship between executive processes and pathological disorganization of frontostriatal networks. We studied 15 patients with idiopathic PD, and 7 age‐matched normal controls, using resting [18F]fluorodeoxyglucose (FDG) and high‐resolution positron emission tomography (PET). We carried out network analysis on regional metabolic data to identify specific covariation patterns associated with motor and executive dysfunction. We detected two independent patterns relating respectively to the two clinical abnormalities. The first pattern (principal component 1) was topographically similar to that described previously in other PD populations. Subject scores for this pattern discriminated patients from controls and correlated significantly with bradykinesia ratings (P = 0.013, r = 0.655) in PD patients. The second pattern (principal component 2) was characterized by relative ventromedial frontal, hippocampal, and striatal hypometabolism, associated with mediodorsal thalamic hypermetabolism. In the PD group, scores from this pattern correlated with scores on the conditional associative learning (CAL; P = 0.01, r = 0.690) and the Brown Peterson paradigm (BPP; P = 0.017, r = −0.651) tests, respectively assessing strategy and planning, and working memory. According to these findings, the networks subserving bradykinesia and executive dysfunction in PD seems to be topographically distinct and to involve different aspects of subcortico‐cortical processing. Hum. Brain Mapping 22:236–245, 2004. © 2004 Wiley‐Liss, Inc.</div>
</front>
</TEI>
<istex>
<corpusName>wiley</corpusName>
<author>
<json:item>
<name>Catherine Lozza</name>
<affiliations>
<json:string>INSERM U 320, Centre Cyceron, Caen, France</json:string>
<json:string>Equipe Universitaire‐Université de Basse Normandie, Caen, France</json:string>
</affiliations>
</json:item>
<json:item>
<name>Jean‐Claude Baron</name>
<affiliations>
<json:string>INSERM U 320, Centre Cyceron, Caen, France</json:string>
<json:string>Department of Neurology, University of Cambridge, Cambridge, United Kingdom</json:string>
</affiliations>
</json:item>
<json:item>
<name>David Eidelberg</name>
<affiliations>
<json:string>Center for Neurosciences, North Shore‐Long Island Jewish Research Institute, Manhasset, New York</json:string>
</affiliations>
</json:item>
<json:item>
<name>Marc J. Mentis</name>
<affiliations>
<json:string>Center for Neurosciences, North Shore‐Long Island Jewish Research Institute, Manhasset, New York</json:string>
</affiliations>
</json:item>
<json:item>
<name>Maren Carbon</name>
<affiliations>
<json:string>Center for Neurosciences, North Shore‐Long Island Jewish Research Institute, Manhasset, New York</json:string>
</affiliations>
</json:item>
<json:item>
<name>Rose‐Marie Marié</name>
<affiliations>
<json:string>INSERM U 320, Centre Cyceron, Caen, France</json:string>
<json:string>Equipe Universitaire‐Université de Basse Normandie, Caen, France</json:string>
</affiliations>
</json:item>
</author>
<subject>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>executive functions</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>Parkinson's disease</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>FDG‐PET</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>network analysis</value>
</json:item>
<json:item>
<lang>
<json:string>eng</json:string>
</lang>
<value>working memory</value>
</json:item>
</subject>
<articleId>
<json:string>HBM20033</json:string>
</articleId>
<language>
<json:string>eng</json:string>
</language>
<abstract>It is assumed widely that the clinical expression of Parkinson's Disease (PD), both motor and cognitive, is subtended by topographically distributed brain networks. However, little is known about the functional neuroanatomy of executive dysfunction in PD. Our objective was to validate further in a PD group the use of network analysis to assess the relationship between executive processes and pathological disorganization of frontostriatal networks. We studied 15 patients with idiopathic PD, and 7 age‐matched normal controls, using resting [18F]fluorodeoxyglucose (FDG) and high‐resolution positron emission tomography (PET). We carried out network analysis on regional metabolic data to identify specific covariation patterns associated with motor and executive dysfunction. We detected two independent patterns relating respectively to the two clinical abnormalities. The first pattern (principal component 1) was topographically similar to that described previously in other PD populations. Subject scores for this pattern discriminated patients from controls and correlated significantly with bradykinesia ratings (P = 0.013, r = 0.655) in PD patients. The second pattern (principal component 2) was characterized by relative ventromedial frontal, hippocampal, and striatal hypometabolism, associated with mediodorsal thalamic hypermetabolism. In the PD group, scores from this pattern correlated with scores on the conditional associative learning (CAL; P = 0.01, r = 0.690) and the Brown Peterson paradigm (BPP; P = 0.017, r = −0.651) tests, respectively assessing strategy and planning, and working memory. According to these findings, the networks subserving bradykinesia and executive dysfunction in PD seems to be topographically distinct and to involve different aspects of subcortico‐cortical processing. Hum. Brain Mapping 22:236–245, 2004. © 2004 Wiley‐Liss, Inc.</abstract>
<qualityIndicators>
<score>8</score>
<pdfVersion>1.3</pdfVersion>
<pdfPageSize>612 x 810 pts</pdfPageSize>
<refBibsNative>true</refBibsNative>
<keywordCount>5</keywordCount>
<abstractCharCount>1881</abstractCharCount>
<pdfWordCount>5555</pdfWordCount>
<pdfCharCount>36799</pdfCharCount>
<pdfPageCount>10</pdfPageCount>
<abstractWordCount>259</abstractWordCount>
</qualityIndicators>
<title>Executive processes in Parkinson's disease: FDG‐PET and network analysis</title>
<genre>
<json:string>article</json:string>
</genre>
<host>
<volume>22</volume>
<publisherId>
<json:string>HBM</json:string>
</publisherId>
<pages>
<total>10</total>
<last>245</last>
<first>236</first>
</pages>
<issn>
<json:string>1065-9471</json:string>
</issn>
<issue>3</issue>
<subject>
<json:item>
<value>Research Article</value>
</json:item>
</subject>
<genre>
<json:string>Journal</json:string>
</genre>
<language>
<json:string>unknown</json:string>
</language>
<eissn>
<json:string>1097-0193</json:string>
</eissn>
<title>Human Brain Mapping</title>
<doi>
<json:string>10.1002/(ISSN)1097-0193</json:string>
</doi>
</host>
<publicationDate>2004</publicationDate>
<copyrightDate>2004</copyrightDate>
<doi>
<json:string>10.1002/hbm.20033</json:string>
</doi>
<id>529CFAF614C17C047BD7C7BE5C7894535011589A</id>
<fulltext>
<json:item>
<original>true</original>
<mimetype>application/pdf</mimetype>
<extension>pdf</extension>
<uri>https://api.istex.fr/document/529CFAF614C17C047BD7C7BE5C7894535011589A/fulltext/pdf</uri>
</json:item>
<json:item>
<original>false</original>
<mimetype>application/zip</mimetype>
<extension>zip</extension>
<uri>https://api.istex.fr/document/529CFAF614C17C047BD7C7BE5C7894535011589A/fulltext/zip</uri>
</json:item>
<istex:fulltextTEI uri="https://api.istex.fr/document/529CFAF614C17C047BD7C7BE5C7894535011589A/fulltext/tei">
<teiHeader>
<fileDesc>
<titleStmt>
<title level="a" type="main" xml:lang="en">Executive processes in Parkinson's disease: FDG‐PET and network analysis</title>
</titleStmt>
<publicationStmt>
<authority>ISTEX</authority>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<availability>
<p>WILEY</p>
</availability>
<date>2004</date>
</publicationStmt>
<notesStmt>
<note>Association France‐Parkinson</note>
<note>Association Neuro‐Psycho‐Pharmacologie</note>
</notesStmt>
<sourceDesc>
<biblStruct type="inbook">
<analytic>
<title level="a" type="main" xml:lang="en">Executive processes in Parkinson's disease: FDG‐PET and network analysis</title>
<author>
<persName>
<forename type="first">Catherine</forename>
<surname>Lozza</surname>
</persName>
<affiliation>INSERM U 320, Centre Cyceron, Caen, France</affiliation>
<affiliation>Equipe Universitaire‐Université de Basse Normandie, Caen, France</affiliation>
</author>
<author>
<persName>
<forename type="first">Jean‐Claude</forename>
<surname>Baron</surname>
</persName>
<affiliation>INSERM U 320, Centre Cyceron, Caen, France</affiliation>
<affiliation>Department of Neurology, University of Cambridge, Cambridge, United Kingdom</affiliation>
</author>
<author>
<persName>
<forename type="first">David</forename>
<surname>Eidelberg</surname>
</persName>
<affiliation>Center for Neurosciences, North Shore‐Long Island Jewish Research Institute, Manhasset, New York</affiliation>
</author>
<author>
<persName>
<forename type="first">Marc J.</forename>
<surname>Mentis</surname>
</persName>
<affiliation>Center for Neurosciences, North Shore‐Long Island Jewish Research Institute, Manhasset, New York</affiliation>
</author>
<author>
<persName>
<forename type="first">Maren</forename>
<surname>Carbon</surname>
</persName>
<affiliation>Center for Neurosciences, North Shore‐Long Island Jewish Research Institute, Manhasset, New York</affiliation>
</author>
<author>
<persName>
<forename type="first">Rose‐Marie</forename>
<surname>Marié</surname>
</persName>
<note type="correspondence">
<p>Correspondence: Service de Neurologie Déjérine, CHU Côte de Nacre, 14000 Caen, France</p>
</note>
<affiliation>INSERM U 320, Centre Cyceron, Caen, France</affiliation>
<affiliation>Equipe Universitaire‐Université de Basse Normandie, Caen, France</affiliation>
</author>
</analytic>
<monogr>
<title level="j">Human Brain Mapping</title>
<title level="j" type="abbrev">Hum. Brain Mapp.</title>
<idno type="pISSN">1065-9471</idno>
<idno type="eISSN">1097-0193</idno>
<idno type="DOI">10.1002/(ISSN)1097-0193</idno>
<imprint>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<pubPlace>Hoboken</pubPlace>
<date type="published" when="2004-07"></date>
<biblScope unit="volume">22</biblScope>
<biblScope unit="issue">3</biblScope>
<biblScope unit="page" from="236">236</biblScope>
<biblScope unit="page" to="245">245</biblScope>
</imprint>
</monogr>
<idno type="istex">529CFAF614C17C047BD7C7BE5C7894535011589A</idno>
<idno type="DOI">10.1002/hbm.20033</idno>
<idno type="ArticleID">HBM20033</idno>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<creation>
<date>2004</date>
</creation>
<langUsage>
<language ident="en">en</language>
</langUsage>
<abstract xml:lang="en">
<p>It is assumed widely that the clinical expression of Parkinson's Disease (PD), both motor and cognitive, is subtended by topographically distributed brain networks. However, little is known about the functional neuroanatomy of executive dysfunction in PD. Our objective was to validate further in a PD group the use of network analysis to assess the relationship between executive processes and pathological disorganization of frontostriatal networks. We studied 15 patients with idiopathic PD, and 7 age‐matched normal controls, using resting [18F]fluorodeoxyglucose (FDG) and high‐resolution positron emission tomography (PET). We carried out network analysis on regional metabolic data to identify specific covariation patterns associated with motor and executive dysfunction. We detected two independent patterns relating respectively to the two clinical abnormalities. The first pattern (principal component 1) was topographically similar to that described previously in other PD populations. Subject scores for this pattern discriminated patients from controls and correlated significantly with bradykinesia ratings (P = 0.013, r = 0.655) in PD patients. The second pattern (principal component 2) was characterized by relative ventromedial frontal, hippocampal, and striatal hypometabolism, associated with mediodorsal thalamic hypermetabolism. In the PD group, scores from this pattern correlated with scores on the conditional associative learning (CAL; P = 0.01, r = 0.690) and the Brown Peterson paradigm (BPP; P = 0.017, r = −0.651) tests, respectively assessing strategy and planning, and working memory. According to these findings, the networks subserving bradykinesia and executive dysfunction in PD seems to be topographically distinct and to involve different aspects of subcortico‐cortical processing. Hum. Brain Mapping 22:236–245, 2004. © 2004 Wiley‐Liss, Inc.</p>
</abstract>
<textClass xml:lang="en">
<keywords scheme="keyword">
<list>
<head>Keywords</head>
<item>
<term>executive functions</term>
</item>
<item>
<term>Parkinson's disease</term>
</item>
<item>
<term>FDG‐PET</term>
</item>
<item>
<term>network analysis</term>
</item>
<item>
<term>working memory</term>
</item>
</list>
</keywords>
</textClass>
<textClass>
<keywords scheme="Journal Subject">
<list>
<head>article category</head>
<item>
<term>Research Article</term>
</item>
</list>
</keywords>
</textClass>
</profileDesc>
<revisionDesc>
<change when="2003-06-30">Received</change>
<change when="2003-12-11">Registration</change>
<change when="2004-07">Published</change>
</revisionDesc>
</teiHeader>
</istex:fulltextTEI>
<json:item>
<original>false</original>
<mimetype>text/plain</mimetype>
<extension>txt</extension>
<uri>https://api.istex.fr/document/529CFAF614C17C047BD7C7BE5C7894535011589A/fulltext/txt</uri>
</json:item>
</fulltext>
<metadata>
<istex:metadataXml wicri:clean="Wiley, elements deleted: body">
<istex:xmlDeclaration>version="1.0" encoding="UTF-8" standalone="yes"</istex:xmlDeclaration>
<istex:document>
<component version="2.0" type="serialArticle" xml:lang="en">
<header>
<publicationMeta level="product">
<publisherInfo>
<publisherName>Wiley Subscription Services, Inc., A Wiley Company</publisherName>
<publisherLoc>Hoboken</publisherLoc>
</publisherInfo>
<doi registered="yes">10.1002/(ISSN)1097-0193</doi>
<issn type="print">1065-9471</issn>
<issn type="electronic">1097-0193</issn>
<idGroup>
<id type="product" value="HBM"></id>
</idGroup>
<titleGroup>
<title type="main" xml:lang="en" sort="HUMAN BRAIN MAPPING">Human Brain Mapping</title>
<title type="short">Hum. Brain Mapp.</title>
</titleGroup>
</publicationMeta>
<publicationMeta level="part" position="30">
<doi origin="wiley" registered="yes">10.1002/hbm.v22:3</doi>
<numberingGroup>
<numbering type="journalVolume" number="22">22</numbering>
<numbering type="journalIssue">3</numbering>
</numberingGroup>
<coverDate startDate="2004-07">July 2004</coverDate>
</publicationMeta>
<publicationMeta level="unit" type="article" position="70" status="forIssue">
<doi origin="wiley" registered="yes">10.1002/hbm.20033</doi>
<idGroup>
<id type="unit" value="HBM20033"></id>
</idGroup>
<countGroup>
<count type="pageTotal" number="10"></count>
</countGroup>
<titleGroup>
<title type="articleCategory">Research Article</title>
<title type="tocHeading1">Research Articles</title>
</titleGroup>
<copyright ownership="publisher">Copyright © 2004 Wiley‐Liss, Inc.</copyright>
<eventGroup>
<event type="manuscriptReceived" date="2003-06-30"></event>
<event type="manuscriptAccepted" date="2003-12-11"></event>
<event type="firstOnline" date="2004-05-10"></event>
<event type="publishedOnlineFinalForm" date="2004-05-10"></event>
<event type="xmlConverted" agent="Converter:JWSART34_TO_WML3G version:2.3.2 mode:FullText source:FullText result:FullText" date="2010-03-06"></event>
<event type="xmlConverted" agent="Converter:WILEY_ML3G_TO_WILEY_ML3GV2 version:3.8.8" date="2014-01-26"></event>
<event type="xmlConverted" agent="Converter:WML3G_To_WML3G version:4.1.7 mode:FullText,remove_FC" date="2014-10-23"></event>
</eventGroup>
<numberingGroup>
<numbering type="pageFirst">236</numbering>
<numbering type="pageLast">245</numbering>
</numberingGroup>
<correspondenceTo>Service de Neurologie Déjérine, CHU Côte de Nacre, 14000 Caen, France</correspondenceTo>
<linkGroup>
<link type="toTypesetVersion" href="file:HBM.HBM20033.pdf"></link>
</linkGroup>
</publicationMeta>
<contentMeta>
<countGroup>
<count type="figureTotal" number="4"></count>
<count type="tableTotal" number="3"></count>
<count type="referenceTotal" number="51"></count>
<count type="wordTotal" number="6665"></count>
</countGroup>
<titleGroup>
<title type="main" xml:lang="en">Executive processes in Parkinson's disease: FDG‐PET and network analysis</title>
<title type="short" xml:lang="en">Executive Processes in PD: Network Analysis</title>
</titleGroup>
<creators>
<creator xml:id="au1" creatorRole="author" affiliationRef="#af1 #af2">
<personName>
<givenNames>Catherine</givenNames>
<familyName>Lozza</familyName>
</personName>
</creator>
<creator xml:id="au2" creatorRole="author" affiliationRef="#af1 #af3">
<personName>
<givenNames>Jean‐Claude</givenNames>
<familyName>Baron</familyName>
</personName>
</creator>
<creator xml:id="au3" creatorRole="author" affiliationRef="#af4">
<personName>
<givenNames>David</givenNames>
<familyName>Eidelberg</familyName>
</personName>
</creator>
<creator xml:id="au4" creatorRole="author" affiliationRef="#af4">
<personName>
<givenNames>Marc J.</givenNames>
<familyName>Mentis</familyName>
</personName>
</creator>
<creator xml:id="au5" creatorRole="author" affiliationRef="#af4">
<personName>
<givenNames>Maren</givenNames>
<familyName>Carbon</familyName>
</personName>
</creator>
<creator xml:id="au6" creatorRole="author" affiliationRef="#af1 #af2" corresponding="yes">
<personName>
<givenNames>Rose‐Marie</givenNames>
<familyName>Marié</familyName>
</personName>
<contactDetails>
<email normalForm="marie-rm@chu-caen.fr">marie‐rm@chu‐caen.fr</email>
</contactDetails>
</creator>
</creators>
<affiliationGroup>
<affiliation xml:id="af1" countryCode="FR" type="organization">
<unparsedAffiliation>INSERM U 320, Centre Cyceron, Caen, France</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af2" countryCode="FR" type="organization">
<unparsedAffiliation>Equipe Universitaire‐Université de Basse Normandie, Caen, France</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af3" countryCode="GB" type="organization">
<unparsedAffiliation>Department of Neurology, University of Cambridge, Cambridge, United Kingdom</unparsedAffiliation>
</affiliation>
<affiliation xml:id="af4" countryCode="US" type="organization">
<unparsedAffiliation>Center for Neurosciences, North Shore‐Long Island Jewish Research Institute, Manhasset, New York</unparsedAffiliation>
</affiliation>
</affiliationGroup>
<keywordGroup xml:lang="en" type="author">
<keyword xml:id="kwd1">executive functions</keyword>
<keyword xml:id="kwd2">Parkinson's disease</keyword>
<keyword xml:id="kwd3">FDG‐PET</keyword>
<keyword xml:id="kwd4">network analysis</keyword>
<keyword xml:id="kwd5">working memory</keyword>
</keywordGroup>
<fundingInfo>
<fundingAgency>Association France‐Parkinson</fundingAgency>
</fundingInfo>
<fundingInfo>
<fundingAgency>Association Neuro‐Psycho‐Pharmacologie</fundingAgency>
</fundingInfo>
<abstractGroup>
<abstract type="main" xml:lang="en">
<title type="main">Abstract</title>
<p>It is assumed widely that the clinical expression of Parkinson's Disease (PD), both motor and cognitive, is subtended by topographically distributed brain networks. However, little is known about the functional neuroanatomy of executive dysfunction in PD. Our objective was to validate further in a PD group the use of network analysis to assess the relationship between executive processes and pathological disorganization of frontostriatal networks. We studied 15 patients with idiopathic PD, and 7 age‐matched normal controls, using resting [
<sup>18</sup>
F]fluorodeoxyglucose (FDG) and high‐resolution positron emission tomography (PET). We carried out network analysis on regional metabolic data to identify specific covariation patterns associated with motor and executive dysfunction. We detected two independent patterns relating respectively to the two clinical abnormalities. The first pattern (principal component 1) was topographically similar to that described previously in other PD populations. Subject scores for this pattern discriminated patients from controls and correlated significantly with bradykinesia ratings (
<i>P</i>
= 0.013,
<i>r</i>
= 0.655) in PD patients. The second pattern (principal component 2) was characterized by relative ventromedial frontal, hippocampal, and striatal hypometabolism, associated with mediodorsal thalamic hypermetabolism. In the PD group, scores from this pattern correlated with scores on the conditional associative learning (CAL;
<i>P</i>
= 0.01,
<i>r</i>
= 0.690) and the Brown Peterson paradigm (BPP;
<i>P</i>
= 0.017,
<i>r</i>
= −0.651) tests, respectively assessing strategy and planning, and working memory. According to these findings, the networks subserving bradykinesia and executive dysfunction in PD seems to be topographically distinct and to involve different aspects of subcortico‐cortical processing. Hum. Brain Mapping 22:236–245, 2004. © 2004 Wiley‐Liss, Inc.</p>
</abstract>
</abstractGroup>
</contentMeta>
</header>
</component>
</istex:document>
</istex:metadataXml>
<mods version="3.6">
<titleInfo lang="en">
<title>Executive processes in Parkinson's disease: FDG‐PET and network analysis</title>
</titleInfo>
<titleInfo type="abbreviated" lang="en">
<title>Executive Processes in PD: Network Analysis</title>
</titleInfo>
<titleInfo type="alternative" contentType="CDATA" lang="en">
<title>Executive processes in Parkinson's disease: FDG‐PET and network analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Catherine</namePart>
<namePart type="family">Lozza</namePart>
<affiliation>INSERM U 320, Centre Cyceron, Caen, France</affiliation>
<affiliation>Equipe Universitaire‐Université de Basse Normandie, Caen, France</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jean‐Claude</namePart>
<namePart type="family">Baron</namePart>
<affiliation>INSERM U 320, Centre Cyceron, Caen, France</affiliation>
<affiliation>Department of Neurology, University of Cambridge, Cambridge, United Kingdom</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Eidelberg</namePart>
<affiliation>Center for Neurosciences, North Shore‐Long Island Jewish Research Institute, Manhasset, New York</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marc J.</namePart>
<namePart type="family">Mentis</namePart>
<affiliation>Center for Neurosciences, North Shore‐Long Island Jewish Research Institute, Manhasset, New York</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maren</namePart>
<namePart type="family">Carbon</namePart>
<affiliation>Center for Neurosciences, North Shore‐Long Island Jewish Research Institute, Manhasset, New York</affiliation>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rose‐Marie</namePart>
<namePart type="family">Marié</namePart>
<affiliation>INSERM U 320, Centre Cyceron, Caen, France</affiliation>
<affiliation>Equipe Universitaire‐Université de Basse Normandie, Caen, France</affiliation>
<description>Correspondence: Service de Neurologie Déjérine, CHU Côte de Nacre, 14000 Caen, France</description>
<role>
<roleTerm type="text">author</roleTerm>
</role>
</name>
<typeOfResource>text</typeOfResource>
<genre type="article" displayLabel="article"></genre>
<originInfo>
<publisher>Wiley Subscription Services, Inc., A Wiley Company</publisher>
<place>
<placeTerm type="text">Hoboken</placeTerm>
</place>
<dateIssued encoding="w3cdtf">2004-07</dateIssued>
<dateCaptured encoding="w3cdtf">2003-06-30</dateCaptured>
<dateValid encoding="w3cdtf">2003-12-11</dateValid>
<copyrightDate encoding="w3cdtf">2004</copyrightDate>
</originInfo>
<language>
<languageTerm type="code" authority="rfc3066">en</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<physicalDescription>
<internetMediaType>text/html</internetMediaType>
<extent unit="figures">4</extent>
<extent unit="tables">3</extent>
<extent unit="references">51</extent>
<extent unit="words">6665</extent>
</physicalDescription>
<abstract lang="en">It is assumed widely that the clinical expression of Parkinson's Disease (PD), both motor and cognitive, is subtended by topographically distributed brain networks. However, little is known about the functional neuroanatomy of executive dysfunction in PD. Our objective was to validate further in a PD group the use of network analysis to assess the relationship between executive processes and pathological disorganization of frontostriatal networks. We studied 15 patients with idiopathic PD, and 7 age‐matched normal controls, using resting [18F]fluorodeoxyglucose (FDG) and high‐resolution positron emission tomography (PET). We carried out network analysis on regional metabolic data to identify specific covariation patterns associated with motor and executive dysfunction. We detected two independent patterns relating respectively to the two clinical abnormalities. The first pattern (principal component 1) was topographically similar to that described previously in other PD populations. Subject scores for this pattern discriminated patients from controls and correlated significantly with bradykinesia ratings (P = 0.013, r = 0.655) in PD patients. The second pattern (principal component 2) was characterized by relative ventromedial frontal, hippocampal, and striatal hypometabolism, associated with mediodorsal thalamic hypermetabolism. In the PD group, scores from this pattern correlated with scores on the conditional associative learning (CAL; P = 0.01, r = 0.690) and the Brown Peterson paradigm (BPP; P = 0.017, r = −0.651) tests, respectively assessing strategy and planning, and working memory. According to these findings, the networks subserving bradykinesia and executive dysfunction in PD seems to be topographically distinct and to involve different aspects of subcortico‐cortical processing. Hum. Brain Mapping 22:236–245, 2004. © 2004 Wiley‐Liss, Inc.</abstract>
<note type="funding">Association France‐Parkinson</note>
<note type="funding">Association Neuro‐Psycho‐Pharmacologie</note>
<subject lang="en">
<genre>Keywords</genre>
<topic>executive functions</topic>
<topic>Parkinson's disease</topic>
<topic>FDG‐PET</topic>
<topic>network analysis</topic>
<topic>working memory</topic>
</subject>
<relatedItem type="host">
<titleInfo>
<title>Human Brain Mapping</title>
</titleInfo>
<titleInfo type="abbreviated">
<title>Hum. Brain Mapp.</title>
</titleInfo>
<genre type="Journal">journal</genre>
<subject>
<genre>article category</genre>
<topic>Research Article</topic>
</subject>
<identifier type="ISSN">1065-9471</identifier>
<identifier type="eISSN">1097-0193</identifier>
<identifier type="DOI">10.1002/(ISSN)1097-0193</identifier>
<identifier type="PublisherID">HBM</identifier>
<part>
<date>2004</date>
<detail type="volume">
<caption>vol.</caption>
<number>22</number>
</detail>
<detail type="issue">
<caption>no.</caption>
<number>3</number>
</detail>
<extent unit="pages">
<start>236</start>
<end>245</end>
<total>10</total>
</extent>
</part>
</relatedItem>
<identifier type="istex">529CFAF614C17C047BD7C7BE5C7894535011589A</identifier>
<identifier type="DOI">10.1002/hbm.20033</identifier>
<identifier type="ArticleID">HBM20033</identifier>
<accessCondition type="use and reproduction" contentType="copyright">Copyright © 2004 Wiley‐Liss, Inc.</accessCondition>
<recordInfo>
<recordContentSource>WILEY</recordContentSource>
<recordOrigin>Wiley Subscription Services, Inc., A Wiley Company</recordOrigin>
</recordInfo>
</mods>
</metadata>
<serie></serie>
</istex>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Sante/explor/ParkinsonV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001251 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001251 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Sante
   |area=    ParkinsonV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     ISTEX:529CFAF614C17C047BD7C7BE5C7894535011589A
   |texte=   Executive processes in Parkinson's disease: FDG‐PET and network analysis
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Sun Jul 3 18:06:51 2016. Site generation: Wed Mar 6 18:46:03 2024